Лекция 1 введение в классическую механику


Скачать 82.02 Kb.
НазваниеЛекция 1 введение в классическую механику
Дата26.10.2012
Размер82.02 Kb.
ТипЛекция
КЛАССИЧЕСКАЯ МЕХАНИКА


ЛЕКЦИЯ 1

ВВЕДЕНИЕ В КЛАССИЧЕСКУЮ МЕХАНИКУ


Классическая механика изучает механическое движение макроскопических объектов, которые движутся со скоростями много меньше скорости света (=3 108 м/с). Под макроскопическими объектами понимаются объекты, размеры которых м. (справа стоит размер типичной молекулы).

Физические теории, изучающие системы тел, движение которых происходит со скоростями много меньшими скорости света, относятся к числу нерелятивистских теорий. Если скорости частиц системы сравнимы со скоростью света , то такие системы относятся к релятивистским системам, и они должны описываться на основе релятивистских теорий. Основой всех релятивистских теорий является специальная теория относительности (СТО). Если размеры изучаемых физических объектов малы м., то такие системы относятся к квантовым системам, и их теории принадлежат к числу квантовых теорий.

Таким образом, классическую механику следует рассматривать как нерелятивистскую неквантовую теорию движения частиц.


1.1 Системы отсчета и принципы инвариантности

Механическое движение – это изменение положения тела относительно других тел с течением времени в пространстве.

Пространство в классической механике считается трехмерным (для определения положения частицы в пространстве необходимо задать три координаты), подчиняющимся геометрии Евклида (в пространстве справедлива теорема Пифагора) и абсолютным. Время одномерно, однонаправлено (меняется от прошлого к будущему) и абсолютно. Абсолютность пространства и времени означает, что их свойства не зависят от распределения и движения материи. В классической механике принимается справедливым следующее утверждение: пространство и время не связаны друг с другом и могут рассматриваться независимо друг от друга.

Движение относительно и, следовательно, для его описания необходимо выбрать тело отсчета, т.е. тело относительно которого рассматривается движение. Поскольку движение происходит в пространстве и во времени, то для его описания следует выбрать ту или иную систему координат и часы (арифметизировать пространство и время). В силу трехмерности пространства каждой его точке сопоставляются три числа (координаты). Выбор той или иной системы координат обычно диктуется условием и симметрией поставленной задачи. В теоретических рассуждениях мы обычно будем использовать прямоугольную декартову систему координат (рис 1.1).

В классической механике для измерения промежутков времени, в силу абсолютности времени, достаточно наличия одних часов, помещенных в начале системы координат (подробно этот вопрос будет рассмотрен в теории относительности). Тело отсчета и, связанные с этим телом, часы и масштабы (система координат) образуют систему отсчета.














0





Рис. 1.1


Введем понятие замкнутой физической системы. Замкнутой физической системой называется такая система материальных объектов, в которой все объекты системы взаимодействуют между собой, но не взаимодействуют с объектами, которые не входят в систему.

Как показывают эксперименты, по отношению к целому ряду систем отсчета оказываются справедливыми следующие принципы инвариантности.

Принцип инвариантности относительно пространственных сдвигов (пространство однородно): на протекание процессов внутри замкнутой физической системы не сказывается ее место положения относительно тела отсчета.

Принцип инвариантности относительно пространственных поворотов (пространство изотропно): на протекание процессов внутри замкнутой физической системы не сказывается ее ориентация относительно тела отсчета.

Принцип инвариантности относительно временных сдвигов (время однородно): на протекание процессов внутри замкнутой физической системы не сказывается время начала протекания процессов.

Принцип инвариантности относительно зеркальных отражений (пространство зеркально - симметрично): процессы, протекающие в замкнутых зеркально – симметричных физических системах, сами являются зеркально – симметричными.

Те системы отсчета по отношению, к которым пространство однородно, изотропно и зеркально – симметрично и время однородно называются инерциальными системами отсчета (ИСО).

Первый закон Ньютона утверждает, что ИСО существуют.

Существует не одна, а бесконечное множество ИСО. Та система отсчета, которая движется относительно ИСО прямолинейно и равномерно сама будет ИСО.

Принцип относительности утверждает, что на протекание процессов в замкнутой физической системе не сказывается ее прямолинейное равномерное движение относительно системы отсчета; законы, описывающие процессы, одинаковы в разных ИСО; сами процессы будут одинаковы, если одинаковы начальные условия.


1.2 Основные модели и разделы классической механики

В классической механике при описании реальных физических систем вводится ряд абстрактных понятий, которым отвечают реальные физические объекты. В число основных таких понятий входят: замкнутая физическая система, материальная точка (частица), абсолютно твердое тело, сплошная среда и ряд других.

Материальная точка (частица) – тело, размерами и внутренней структурой которого можно пренебречь при описании его движения. При этом каждая частица характеризуется своим определенным набором параметров – масса, электрический заряд. В модели материальной точки не рассматриваются структурные внутренние характеристики частиц: момент инерции, дипольный момент, собственный момент (спин) и др. Положение частицы в пространстве характеризуется тремя числами (координатами) или радиус-вектором (рис. 1.1).

Абсолютно твердое тело

- система материальных точек, расстояния между которыми не меняются в процессе их движения;

- тело, деформациями которого можно пренебречь.

Реальный физический процесс рассматривается как непрерывная последовательность элементарных событий.

Элементарное событие – это явление с нулевой пространственной протяженностью и нулевой длительностью (например, попадание пули в мишень). Событие характеризуется четырьмя числами – координатами; три пространственные координаты (или радиус – вектор) и одна временная координата: . Движение частицы при этом представляется как непрерывная последовательность следующих элементарных событий: прохождение частицы через данную точку пространства в данное время.

Закон движения частицы считается заданным, если известна зависимость радиус – вектора частицы (или трех ее координат) от времени:

В зависимости от вида изучаемых объектов классическую механику подразделяют на механику частицы и системы частиц, механику абсолютно твердого тела, механику сплошных сред (механика упругих тел, гидромеханика, аэромеханика).

По характеру решаемых задач классическую механику подразделяют на кинематику, динамику и статику. Кинематика изучает механическое движение частиц без учета причин, вызывающих изменение характера движения частиц (сил). Закон движения частиц системы считается заданным. По этому закону в кинематике определяются скорости, ускорения, траектории движения частиц системы. Динамика рассматривает механическое движение частиц с учетом причин, вызывающих изменение характера движения частиц. Силы, действующие между частицами системы и на частицы системы со стороны тел, не включенных в систему, считаются известными. Природа сил в классической механике не обсуждается. Статика может рассматриваться как частный случай динамики, где изучаются условия механического равновесия частиц системы.

По способу описания систем механика делится на ньютонову и аналитическую механику.


1.3 Преобразования координат событий

Рассмотрим, как преобразуются координаты событий при переходе от одной ИСО к другой.

1. Пространственный сдвиг. В данном случае преобразования выглядят так:

(1.1)

где – вектор пространственного сдвига, который не зависит от номера события (индекс а).

2. Временной сдвиг:

, , (1.2)

где – временной сдвиг.

3. Пространственный поворот:

, , (1.3)

где – вектор бесконечно малого поворота (рис.1.2).

4. Временная инверсия (обращение времени):

, . (1.4)

5. Пространственная инверсия (отражение в точке):

, (1.5)

6. Преобразования Галилея. Рассматриваем преобразования координат событий при переходе от одной ИСО к другой, которая движется относительно первой прямолинейно и равномерно со скоростью (рис.1.3):

, , (1.6)

где второе соотношение постулируется (!) и выражает собой абсолютность времени.

Дифференцируя по времени правую и левую часть преобразования пространственных координат с учетом абсолютного характера времени, используя определение скорости, как производной от радиуса – вектора по времени, условие, что =const, получаем классический закон сложения скоростей

. (1.7)

Здесь следует особо обратить внимание на то обстоятельство, что при выводе последнего соотношения необходимо принимать во внимание постулат об абсолютном характере времени.
















0 0


Рис. 1.2 Рис. 1.3


Дифференцируя по времени еще раз, используя определение ускорения, как производной от скорости по времени, получим, что ускорение одинаково по отношению к разным ИСО (инвариантно относительно преобразований Галилея). Данное утверждение математически выражает собой принцип относительности в классической механике.

С математической точки зрения преобразования 1-6 образуют группу. Действительно, данная группа содержит в себе единичное преобразование – тождественное преобразование, отвечающее отсутствию перехода от одной системы к другой; для каждого из преобразований 1-6 существует обратное преобразование, которое переводит систему в исходное состояние. Операция умножения (композиции) вводится как последовательное применение соответствующих преобразований. Следует особо обратить внимание, что группа преобразований вращения не подчиняется коммутативному (перестановочному) закону, т.е. является неабелевой. Полную группу преобразований 1-6 называют галилеевой группой преобразований.


1.4 Векторы и скаляры

Вектором называется физическая величина, которая преобразуется как радиус-вектор частицы и характеризуется своим численным значением и направлением в пространстве. По отношению к операции пространственной инверсии векторы делятся на истинные (полярные) и псевдовекторы (аксиальные). При пространственной инверсии истинный вектор меняет свой знак, псевдовектор не изменяется.

Скаляры характеризуются только своим численным значением. По отношению к операции пространственной инверсии скаляры делятся на истинные и псевдоскаляры. При пространственной инверсии истинный скаляр не изменяется, псевдоскаляр меняет свой знак.

Примеры. Радиус-вектор, скорость, ускорение частицы являются истинными векторами. Векторы угла поворота, угловой скорости, углового ускорения – псевдовекторы. Векторное произведение двух истинных векторов – псевдовектор, векторное произведение истинного вектора на псевдовектор – истинный вектор. Скалярное произведение двух истинных векторов – истинный скаляр, истинного вектора на псевдовектор – псевдоскаляр.


Следует отметить, что в векторном или скалярном равенстве справа и слева должны стоять слагаемые одной природы по отношению к операции пространственной инверсии: истинные скаляры или псевдоскаляры, истинные векторы или псевдовекторы.




Добавить документ в свой блог или на сайт

Похожие:

Разместите кнопку на своём сайте:
cat.convdocs.org


База данных защищена авторским правом ©cat.convdocs.org 2012
обратиться к администрации
cat.convdocs.org
Главная страница